numpy.random.normal() 用法及代码示例

对于正态随机,我们采用.normal()

numpy.random.normal(loc = 0.0,scale = 1.0,size = None)

创建一个指定形状的数组,并用随机值填充它,这实际上是Normal(Gaussian)Distribution的一部分。由于其特征形状,此分布也称为钟形曲线。

参数:

loc : [float or array_like] 分布的平均值.
scale : [float or array_like] 分布的标准差.
size : [int or int tuples]. 输出形状为 (m, n, k),然后绘制 mnk 样本。 如果 size 为 None(默认情况下),则返回单个值.

返回:

已定义形状的数组,按照正态分布填充随机值

代码1:随机构造一维数组

# Python Program illustrating 
# numpy.random.rand() method 
   
import numpy as geek 
   
# 1D Array 
array = geek.random.rand(5) 
print("1D Array filled with random values : \n", array)

输出:

1D Array filled with random values : 
 [ 0.84503968  0.61570994  0.7619945   0.34994803  0.40113761]

代码2:根据高斯分布随机构造一维数组

# Python Program illustrating 
# numpy.random.normal() method 
   
import numpy as geek 
   
# 1D Array 
array = geek.random.normal(0.0, 1.0, 5) 
print("1D Array filled with random values "
      "as per gaussian distribution : \n", array) 
# 3D array 
array = geek.random.normal(0.0, 1.0, (2, 1, 2)) 
print("\n\n3D Array filled with random values "
      "as per gaussian distribution : \n", array)

输出:

1D Array filled with random values as per gaussian distribution : 
 [-0.99013172 -1.52521808  0.37955684  0.57859283  1.34336863]

3D Array filled with random values as per gaussian distribution : 
 [[[-0.0320374   2.14977849]]

 [[ 0.3789585   0.17692125]]]

Code3:Python程序,说明NumPy中随机与正常的图形表示

# Python Program illustrating 
# graphical representation of  
# numpy.random.normal() method 
# numpy.random.rand() method 
   
import numpy as geek 
import matplotlib.pyplot as plot 
   
# 1D Array as per Gaussian Distribution 
mean = 0 
std = 0.1
array = geek.random.normal(0, 0.1, 1000) 
print("1D Array filled with random values "
      "as per gaussian distribution : \n", array); 
  
# Source Code :  
# https://docs.scipy.org/doc/numpy-1.13.0/reference/ 
# generated/numpy-random-normal-1.py 
count, bins, ignored = plot.hist(array, 30, normed=True) 
plot.plot(bins, 1/(std * geek.sqrt(2 * geek.pi)) *
          geek.exp( - (bins - mean)**2 / (2 * std**2) ), 
          linewidth=2, color='r') 
plot.show() 
  
  
# 1D Array constructed Randomly 
random_array = geek.random.rand(5) 
print("1D Array filled with random values : \n", random_array) 
  
plot.plot(random_array) 
plot.show()

输出:

1D Array filled with random values as per gaussian distribution :
[ 0.12413355 0.01868444 0.08841698 …, -0.01523021 -0.14621625
-0.09157214]

ckuOu7

1D Array filled with random values :
[ 0.72654409 0.26955422 0.19500427 0.37178803 0.10196284]

RA6cN7

重要:
在代码3中,图1清楚地显示了高斯分布,它是根据通过random.normal()方法生成的值创建的,因此遵循高斯分布。
图2不遵循任何分布,因为它是根据random.rand()方法生成的随机值创建的。

发表回复

登录... 后才能评论